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Abstract
Critical behaviour of a fluid (binary mixture or liquid crystal), subjected to
strongly anisotropic turbulent mixing, is studied by means of the field theoretic
renormalization group. As a simplified model, relaxational stochastic dynamics
of a non-conserved scalar order parameter, coupled to a random velocity field
with prescribed statistics, is considered. The velocity is taken Gaussian, white
in time, with a correlation function of the form ∝δ(t − t ′)/|k⊥|d+ξ , where k⊥ is
the component of the wave vector, perpendicular to the distinguished direction
(‘direction of the flow’)—the d-dimensional generalization of the ensemble
introduced by Avellaneda and Majda (1990 Commun. Math. Phys. 131 381)
within the context of passive scalar advection. It is shown that, depending on
the relation between the exponent ξ and the space dimensionality d, the system
exhibits various types of large-scale self-similar behaviour, associated with
different infrared attractive fixed points of the renormalization group equations.
In addition to well-known asymptotic regimes (model A of equilibrium critical
dynamics and a passively advected scalar with no self-interaction), the existence
of a new, non-equilibrium and strongly anisotropic type of critical behaviour
(universality class) is established, and the corresponding critical dimensions
are calculated to the second order of the double expansion in ξ and ε = 4 − d

(two-loop approximation). The most realistic values of the model parameters
(for example, d = 3 and the Kolmogorov exponent ξ = 4/3) belong to this
class. The scaling behaviour appears anisotropic in the sense that the critical
dimensions related to the directions parallel and perpendicular to the flow are
essentially different. The results are in qualitative agreement with the results,
obtained in experiments and simulations of fluid systems subjected to various
kinds of regular and chaotic anisotropic flows.
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1. Introduction

Various systems of very different physical nature (ferromagnets and antiferromagnets, gas–
vapour systems, binary liquid mixtures and alloys) reveal interesting singular behaviour when
undergoing continuous (second-order) phase transition (that is, in the vicinity of their critical
points). Specific heat, susceptibility, spontaneous magnetization, etc exhibit singular self-
similar (power-law) behaviour, whose quantitative characteristics (critical dimensions and
scaling functions) depend only on a few global characteristics of the system (like symmetry or
space dimensionality). This universality is related to the existence in such systems of a wide
range of strongly coupled degrees of freedom: it produces a kind of collective behaviour in
which numerous irrelevant details of a specific system are wiped away. This classical subject
is exposed in the monographs [1] and the literature cited therein.

Consistent qualitative and quantitative description of the equilibrium critical behaviour
was achieved within the framework of the renormalization group (RG). In the RG approach,
possible types of critical regimes (universality classes) are associated with infrared (IR)
attractive fixed points of renormalizable field theoretic models. Most typical phase transitions
belong to the universality class of the O(N)-symmetric ϕ4 model of an N-component scalar
order parameter (Landau–Ginzburg Hamiltonian). Universal characteristics of the critical
behaviour depend only on N and the space dimensionality d and can be calculated in the
form of the expansion in ε = 4 − d or within other systematic perturbation schemes; see the
monographs [2, 3] and the literature cited therein.

Dynamical critical behaviour (critical singularities of relaxation and correlation times,
various kinetic and transport coefficients, etc) appears richer, less universal and is
comparatively less understood. Different nature of the order parameter (conserved or
non-conserved), inclusion of ‘secondary’ slow modes (densities of entropy or energy) and
interaction with hydrodynamical degrees of freedom produce different types of critical
dynamics for the same static model [3–5]. The reliable sets of second-order (two-loop)
results were only recently fixed, and many important questions remain open; see the recent
review paper [5] for discussion and bibliography.

It has long been realized that the behaviour of a real system near its critical point is
extremely sensitive to external disturbances, geometry of the experimental setup, gravity,
presence of impurities and so on. ‘Ideal’ equilibrium critical behaviour of an infinite system
can be obscured by limited accuracy of measuring the temperature, finite-size effects, finite
time of evolution (ageing) and so on. What is more, some disturbances (randomly distributed
impurities in magnets and turbulent mixing of fluid systems) can produce completely new
types of critical behaviour with rich and rather exotic properties (e.g., expansion in

√
ε rather

than in ε); see [6–8]. Over the past three decades, considerable attention has been attracted
by the effects of various kinds of imposed flows (laminar shear flows, turbulent stirring and
other types of deterministic or chaotic flows) on the behaviour of critical fluids, e.g., of binary
liquid mixtures near the consolution point; see the papers [7–20] and references therein.
This problem is closely related to another interesting issue: the effects of imposed flows on
the dynamics of phase ordering—the growth of order through domain coarsening (spinodal
decomposition), when a system is quenched from its high-temperature homogeneous phase
into the low-temperature multi-phase coexistence region; see e.g. [15–19] and the literature
cited therein.

Although very different, many of such systems exhibit a common interesting feature:
existence of new non-equilibrium stationary states with (arguably) self-similar statistical
properties and new sets of scaling exponents. Emergence of non-equilibrium steady states
appears rather a generic and robust phenomenon, being observed in experiments, simulations
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and analytic treatments of critical liquids with passive and active order parameters subjected to
laminar or turbulent flows, various kinds of regular and chaotic synthetic velocity ensembles,
cellular or shear flows, and so on [7–20]. In the presence of a distinguished direction, scaling
behaviour of such systems appears strongly anisotropic, with different critical dimensions
corresponding to different spatial directions [15–18].

The aim of the theory is to establish the existence of such regimes on the basis of
microscopic dynamic models, to classify corresponding universality classes, to calculate their
scaling dimensions within consistent approximations or regular perturbation schemes, to
investigate their universality, dependence on the model parameters, and so on. In this paper,
we will focus on the anisotropic turbulent mixing of critical fluids, because most real flows
are strongly anisotropic; this anisotropy persists in the asymptotic critical regime and leads to
new interesting effects.

The full-scale model of a critical fluid subjected to a strongly anisotropic turbulent
stirring must deal with a conserved (binary mixtures) or non-conserved (liquid crystals) order
parameter with mutual coupling with the velocity field, governed by nonlinear dynamic
equations (e.g. the stochastic Navier–Stokes equation with an external random stirring force),
and the anisotropy is introduced by the initial and/or boundary conditions. However, even
for the equilibrium and isotropic case (model H in the traditional classification introduced in
[4]), the consistent RG analysis of such a problem appears a most difficult task and has only
recently been completed (see the discussion and references in [5] and sections 5.23–5.25 in
book [3]), while theoretical description of fully developed turbulence on the basis of dynamic
equations remains, in many respects, essentially an open problem.

In the present paper, we apply the field theoretic RG to a simplified ‘minimal’ model of
a stirred critical fluid, which nevertheless appears rather nontrivial and captures the main
property of the problem: existence of a new, non-equilibrium and strongly anisotropic,
universality class of scaling behaviour. Namely, we consider a purely relaxational dynamics
of a non-conserved passive scalar order parameter (model A in the terminology of [4]) coupled
to the random velocity field with prescribed Gaussian statistics.

Recently, the models involving passive (no feedback on the velocity) linear (no self-
interaction) scalar fields advected by such ‘synthetic’ velocity ensembles attracted enormous
attention among the ‘turbulent community’ because of the insight they offer into the origin
of intermittency and anomalous scaling in the real fluid turbulence; see the review paper [21]
and references therein. In spite of their relative simplicity, such models reproduce many of the
anomalous features of genuine turbulent heat or mass transport observed in experiments. Most
popular is the Kazantsev–Kraichnan ensemble with the velocity correlation function of the
form 〈vv〉 ∝ δ(t − t ′)k−d−ξ . Vanishing of the correlation time is necessary to ensure Galilean
symmetry of the problem, while a power-law dependence on the wave number k mimics real
self-similar properties of fully developed turbulence. For a conserved order parameter, it can
be shown that the nonlinearity in the Navier–Stokes equation and a finite correlation time are
indeed IR irrelevant (in the sense of Wilson) in the analysis of critical behaviour; see also the
discussion in [8].

In the RG approach to the Kraichnan model and its descendants, reviewed in [22], the
exponent ξ plays the role of a formal RG expansion parameter, analogous in this respect to
the conventional ε = 4 − d.

Synthetic ensembles also allow one to easily introduce anisotropy, compressibility, etc
and to study their effects on the behaviour of the scalar field. In this paper, we employ the d-
dimensional generalization of a strongly anisotropic ensemble introduced in [23] in connection
with the passive linear problem: the velocity field is oriented along a chosen direction n and
its correlation function depends only on the coordinates perpendicular to n; see also [24, 25].
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In experiments, critical fluids with a non-conserved order parameter can be realized in
twisted nematic liquid crystals; see the discussion and references in [17, 18]. In a wider
context, such a model can be viewed as a model system for studying generic non-equilibrium
phase transitions. Recently, significant progress has been made in classifying IR scaling
behaviour of such phenomena, including driven diffusive systems, diffusion-limited reactions,
growth, ageing and percolation processes, and so on; see e.g. [26–31] and references therein.
Being analytically tractable, our model can serve as a possible testing ground in studying
such scaling regimes and their universality within controlled approximations or a regular
perturbative scheme.

Earlier, the field theoretic RG was applied to the stirred critical fluid in a number of
studies. New types of critical behaviour were identified for model B in a Gaussian velocity
ensemble [7, 8] and generalized model A with inclusion of a large-scale stirring force and
the velocity field governed by the stochastic Navier–Stokes equation [14, 20], but only purely
isotropic situations were considered. The RG ideas were also applied to the problem of phase
separation and domain growth below the critical temperature; see e.g. [32, 33] and references
therein. By contrast with critical phenomena, the RG approach to such problems suffers from
the lack of an (obvious) small parameter (like ε = 4 − d or ξ in our case) and should involve
numerical (Monte Carlo) simulations [32] or additional phenomenological hypotheses [33].

The paper is organized as follows. In section 2, we give a detailed description of the
model, present its field theoretic formulation and the corresponding diagrammatic technique.
In section 3, we analyse canonical dimensions and ultraviolet (UV) divergences of the
model. We show that, after an appropriate extension, the model becomes multiplicatively
renormalizable and present the corresponding renormalized action functional. We also show
that, for the extended model, independent canonical dimensions should be introduced for the
directions parallel and perpendicular to the flow. In section 4, we derive the differential RG
equations, introduce the RG functions (β functions and anomalous dimensions γ ) and give
the corresponding one-loop and two-loop expressions for the case of an N-component order
parameter. In section 5, we analyse possible scaling regimes of the model, associated with
the fixed points of the RG equations, and identify their ranges of stability in the ε–ξ plane.
Three fixed points correspond to known regimes: free (Gaussian) regime, linear passive scalar
and equilibrium model A. The fourth fixed point corresponds to a new, non-equilibrium and
strongly anisotropic, universality class. For the most realistic values of the model parameters
(namely, d = 3 and 0 < ξ < 2; see section 2), it is the latter point that is IR attractive
and governs the large-scale, long-time behaviour of the system. The corresponding critical
dimensions depend on ε and ξ and can be systematically calculated as double series in those
parameters; the explicit second-order results are presented in section 6. The scaling regime
appears strongly anisotropic in the sense that the critical dimensions related to the directions
parallel and perpendicular to the flow are different. Section 7 is reserved for discussion,
comparison to the existing experimental and theoretical results and the conclusions.

In appendix A, we explore consequences of the Galilean symmetry for the renormalization
of our model. The main points concerning the calculation of the renormalization constants
and RG functions are briefly discussed in appendix B.

2. The model: field theoretic formulation

Relaxational dynamics of a non-conserved scalar order parameter ϕ(x) with x ≡ {t, x} is
described by a stochastic differential equation

σ0∂tϕ(x) = −δH(ϕ)/δϕ(x) + f (x), (2.1)
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where ∂t = ∂/∂t, σ0 = 1/	0 is the reciprocal of the (constant) kinetic coefficient 	0 > 0 and
f (x) is a Gaussian random noise with zero mean and the pair correlation function

Df (x − x ′) ≡ 〈f (x)f (x ′)〉 = 2σ0δ(t − t ′)δ(d)(x − x′), (2.2)

d being the dimensionality of the x space. Near the critical point, the Hamiltonian H(ϕ) is
taken in the Landau–Ginzburg form

H(ϕ) =
∫

dx
{
−1

2
ϕ(x)∂2ϕ(x) +

τ0

2
ϕ2(x) +

λ0

4!
ϕ4(x)

}
, (2.3)

where ∂i = ∂/∂xi is the spatial derivative, ∂2 = ∂i∂i is the Laplacian, τ0 ∝ (T −Tc) measures
deviation from the critical temperature and λ0 > 0 is the coupling constant; after the functional
differentiation in (2.1) one has to replace ϕ(x) → ϕ(x). The model (2.1)–(2.3) is referred to
as model A [4]; its critical behaviour is very well understood [2–5].

Coupling with the velocity field vi(x) is introduced by the replacement

∂t → ∇t = ∂t + vi∂i, (2.4)

where ∇t is the Lagrangian (Galilean covariant) derivative.
Let n be a unit constant vector that determines the distinguished direction (‘direction

of the flow’). Then any vector can be decomposed into the components perpendicular and
parallel to the flow, for example, x = x⊥ + nx‖ with x⊥ · n = 0. The velocity field will be
taken in the form

v = u + nv(t, x⊥), (2.5)

where u is a constant vector parallel to n and v(t, x⊥) is a scalar function independent of x‖.
Then the incompressibility condition is automatically satisfied:

∂ivi = ∂‖v(t, x⊥) = 0. (2.6)

From now on, we set u = 0 (the general case u �= 0 leads to no serious alterations in the
RG analysis and will be briefly discussed at the end of section 7). For v(t, x⊥) we assume a
Gaussian distribution with zero mean and the pair correlation function of the form

〈v(t, x⊥)v(t ′, x′
⊥)〉 = δ(t − t ′)

∫
dk

(2π)d
exp{ik · (x − x′)}Dv(k)

= δ(t − t ′)
∫

dk⊥
(2π)d−1

exp{ik⊥ · (x⊥ − x′
⊥)}D̃v(k⊥), k⊥ = |k⊥|,

(2.7)

with the scalar coefficient functions of the form

Dv(k) = 2πδ(k‖)D̃v(k⊥), D̃v(k⊥) = D0k
−d+1−ξ

⊥ . (2.8)

Here D0 > 0 is a constant amplitude factor and ξ an arbitrary exponent, which (along with
the conventional ε = 4 − d) will play the part of a formal RG expansion parameter. The IR
regularization in (2.7) is provided by the cut-off k⊥ > m (by dimension, τ0 ∝ m2). (A precise
form of the IR regularization is inessential; a sharp cut-off is the most convenient choice from

the calculational viewpoints. Another possibility is to replace k⊥ →
√

k2
⊥ + m2 in (2.8).) The

natural interval for the exponent is 0 < ξ < 2, when the so-called effective eddy diffusivity

V(r⊥) =
∫

dk⊥
(2π)d−1

{1 − exp(ik⊥ · r⊥)}D̃v(k⊥) (2.9)

has a finite limit for m → 0; it includes the most realistic Kolmogorov value ξ = 4/3. The
exponent ξ can also be viewed as a kind of Hölder exponent, which measures ‘roughness’ of
the velocity field [21]; the ‘Batchelor limit’ ξ → 2 corresponds to smooth velocity.
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In order to ensure multiplicative renormalizability of the model, it is necessary to split the
Laplacian in (2.3) into the parallel and perpendicular parts ∂2 → ∂2

⊥ + u0∂
2
‖ by introducing

a new parameter u0 > 0 (in the anisotropic case, these two terms will be renormalized in a
different way). Thus, equation (2.1) becomes

σ0∇tϕ(x) = ∂2
⊥ϕ(x) + u0∂

2
‖ϕ(x) − τ0ϕ(x) − λ0ϕ

3(x)/6 + f (x); (2.10)

this completes formulation of the model.
Interpretation of the splitting of the Laplacian term in (2.10) can be two-fold. On the

one hand, the fluctuation models of the types (2.1) and (2.3) are phenomenological and, by
construction, they must require all the IR relevant terms allowed by symmetry. The fact that
the splitting is required by the renormalization procedure means that it is not forbidden by
dimensionality or symmetry considerations and, therefore, it is natural to include the general
value u0 �= 1 to the model from the very beginning. On the other hand, one can insist on
studying the original model with u0 = 1 and SO(d) covariant Laplacian term, although that
symmetry is broken to SO(d − 1) by the interaction with the anisotropic velocity ensemble.
Then the extension of the model to the case u0 �= 1 can be viewed as a purely technical
trick which is only needed to ensure the multiplicative renormalizability and to derive the
RG equations. The latter should then be solved with the special initial data corresponding
to u0 = 1 (in renormalized variables this anyway will correspond to general initial data with
u �= 1). Since the IR attractive fixed point of the RG equations is unique for any given choice
of the parameters ε and ξ (see section 5), the resulting IR behaviour will be the same as for
the case of the extended model with general u0 �= 1.

According to the general theorem [34] (see also the monographs [2, 3]), our stochastic
problem is equivalent to the field theoretic model of the extended set of fields  = {ϕ′, ϕ, v}
with the action functional

S() = σ0(ϕ
′)2 + ϕ′[−σ0∇tϕ + ∂2

⊥ϕ + u0∂
2
‖ϕ − τ0ϕ − λ0ϕ

3
/

6
]

+ Sv(v). (2.11)

The first few terms represent the De Dominicis–Janssen action functional for the stochastic
problem (2.1), (2.2) at fixed v; it involves an auxiliary scalar response field ϕ′(x). All the
required integrations over x = {t, x} and summations over the vector indices are implied, for
example,

ϕ′∂2
⊥ϕ =

∫
dt

∫
dx ϕ′(x)∂2

⊥ϕ(x).

It is worth noting that, owing to transversality of the velocity field (2.6), the derivative in the
coupling term in (2.11) can also be moved onto the field ϕ′ using integration by parts:

ϕ′(vi∂i)ϕ =
∫

dt

∫
dx ϕ′(x)v(t, x⊥)∂‖ϕ(x)

= −
∫

dt

∫
dx(∂‖ϕ′(x))v(t, x⊥)ϕ(x). (2.12)

The last term in (2.11) corresponds to the Gaussian averaging over v with correlator (2.7)
and has the form

Sv(v) = 1

2

∫
dt

∫
dx⊥ dx′

⊥v(t, x⊥)D̃−1
v (x⊥ − x′

⊥)v(t, x′
⊥), (2.13)

where

D̃−1
v (r⊥) ∝ D−1

0 r
2(1−d)−ξ

⊥ (2.14)

is the kernel of the inverse linear operation D−1
v for the correlation function Dv in (2.8).
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This formulation means that statistical averages of random quantities in the original
stochastic problem coincide with the Green functions of the field theoretic model with action
(2.11), given by functional averages with the weight expS() (see equation (A.2)). This
allows one to apply the field theoretic renormalization theory and renormalization group to
our stochastic problem. The model (2.11) corresponds to a standard Feynman diagrammatic
technique with three bare propagators (lines in the diagrams): 〈vv〉0, given by (2.7), (2.8),
and the propagators of the scalar fields (in the frequency–momentum and time–momentum
representations):

〈ϕϕ′〉0 = 〈ϕ′ϕ〉∗0 = {−iσ0ω + ε(k)}−1 ↔ θ(t − t ′)σ−1
0 exp{−ε(k)(t − t ′)/σ0}, (2.15)

where ε(k) = k2
⊥ + u0k2

‖ + τ0 and θ(· · ·) is the Heaviside step function, and

〈ϕϕ〉0 = 2σ0
{
ω2σ 2

0 + ε2(k)
}−1 ↔ 1

ε(k)
exp {−ε(k)|t − t ′|/σ0}; (2.16)

the propagator 〈ϕ′ϕ′〉0 vanishes identically for any field theory of the type (2.11). The model
also involves two types of vertices corresponding to the interaction terms ϕ′ϕ3 and ϕ′(v∂‖)ϕ.
The corresponding coupling constants (‘charges’) g0 and w0 defined are introduced by the
relations

λ0 = u
1/2
0 g0, D0 = w0u0/σ0, (2.17)

so that by dimension g0 ∼ �−ε and w0 ∼ �−ξ , where � has the order of the smallest length
scale of our problem. More precisely, these two lengths are rather different: the coupling g0

in the Landau–Ginzburg model is conventionally related to the molecular length, while w0

corresponds to the Kolmogorov (dissipation) scale of turbulence. However, in the following
we will be interested in the behaviour of the correlation functions at distances much larger
than both these lengths, which allows us not to distinguish them. Thus, we can write

g0 ∼ �ε, w0 ∼ �ξ, (2.18)

where � sets the characteristic UV momentum scale.
By rescaling the fields, the coupling constant w0 can be placed in front of the interaction

term ϕ′(v∂)ϕ in the action (2.11), which is more familiar for the field theory. We do not do
it, however, in order not to spoil the natural form of the covariant derivative, and assign the
factor w0 to the propagator 〈vv〉0.

3. Canonical dimensions and renormalization

It is well known that the analysis of UV divergences is based on the analysis of canonical
dimensions (‘power counting’); see e.g. [2, 3]. General dynamic models of the type (2.11),
in contrast to static models (like e.g. (2.3)), have two scales: canonical dimension of some
quantity F (a field or a parameter in the action functional) is completely characterized by
two numbers, the frequency dimension dω

F and the momentum dimension dk
F . They are

determined such that [F ] ∼ [T ]−dω
F [L]−dk

F , where L is the length scale and T is the time scale;
see e.g. chapter 5 in book [3]. Our strongly anisotropic model, however, has two independent
momentum scales, related to the directions perpendicular and parallel to the vector n, and
a more detailed specification of the canonical dimensions is necessary. Namely, one has to
introduce two independent momentum canonical dimensions d⊥

F and d
‖
F so that

[F ] ∼ [T ]−dω
F [L⊥]−d⊥

F [L‖]−d
‖
F ,

where L⊥ and L‖ are (independent) length scales in the corresponding subspaces. The
dimensions are found from the obvious normalization conditions d⊥

k⊥ = −d⊥
x⊥ = 1, d

‖
k⊥ =
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Table 1. Canonical dimensions of the fields and parameters in the model (2.11).

F ϕ ϕ′ v σ, σ0 u, u0 m,µ, � g0 w0 g, w

dω
F 0 1 1 −1 0 0 0 0 0

d⊥
F (d − 3)/2 (d − 3)/2 0 2 2 1 4 − d ξ 0

d
‖
F 1/2 1/2 −1 0 −2 0 0 0 0

dk
F = d⊥

F + d
‖
F d/2 − 1 d/2 − 1 −1 2 0 1 4 − d ξ 0

dF = 2dω
F + dk

F d/2 − 1 d/2 + 1 1 0 0 1 4 − d ξ 0

−d
‖
x⊥ = 0, dω

k⊥ = dω
k‖ = 0, dω

ω = −dω
t = 1, and so on, and from the requirement that each

term of the action functional (2.11) be dimensionless (with respect to all the three independent
dimensions separately). The original momentum dimension can be found from the relation
dk

F = d⊥
F + d

‖
F . Then, based on dk

F and dω
F , one can introduce the total canonical dimension

dF = dk
F + 2dω

F = d⊥
F + d

‖
F + 2dω

F (in the free theory, ∂t ∝ ∂2
⊥ ∝ ∂2

‖ ), which plays in the
theory of renormalization of dynamic models the same role as the conventional (momentum)
dimension does in static problems; cf chapter 5 in book [3].

The full set of independent canonical dimensions is needed, in particular, to identify
the completely dimensionless parameters, which can only appear as arguments in the
renormalization constants and RG functions. Of course, the existence of several independent
spatial scales is not too exotic; it was encountered in a number of models: ferroelectrics [35]
(see also section 1.17 of book [3]), ferromagnets with anisotropically correlated quenched
impurities [36, 37], continuous models of self-organized criticality [38], anisotropic versions
of the Kardar–Parisi–Zhang equation [39], m-axial Lifshits points [40] and growing surfaces,
driven by obliquely incident particle beams [31].

The canonical dimensions for the model (2.11) are summarized in table 1, including
renormalized parameters, which will be introduced later on. From table 1 or, equivalently,
from the relations (2.18), it follows that the model is logarithmic (the coupling constants g0

and w0 are simultaneously dimensionless) at d = 4 and ξ = 0, so that the UV divergences
in the correlation functions manifest themselves as poles in ε ≡ 4 − d, ξ and their linear
combinations or, in general, as singularities at ε and ξ → 0.

The total canonical dimension of an arbitrary 1-irreducible Green function 	 =
〈 · · · 〉1-ir is given by the relation

d	 = d + 2 −
∑


Nd,
∑


Nd = Nϕ′dϕ′ + Nϕdϕ + Nvdv. (3.1)

Here N = {Nϕ,Nϕ′ , Nv} are the numbers of corresponding fields entering into the function
	, and the summation over all types of the fields in (3.1) and analogous formulae below is
always implied.

The total dimension d	 in logarithmic theory (that is, at ε = ξ = 0) is the formal index
of the UV divergence δ	 = d	|ε=ξ=0. Superficial UV divergences, whose removal requires
counterterms, can be present only in those functions 	 for which δ	 is a non-negative integer.
The counterterms are local, that is, in the frequency–momentum representation the counterterm
to a given function 	 is a polynomial in ω, k⊥ and k‖. Since the parameters u0 and σ0 are
dimensionless with respect to the total dimension dF , the index δ	 gives the degree of that
polynomial (with the assumption that ω ∼ k2

⊥ ∼ k2
‖); a detailed structure of the counterterms

and their dependence on σ0 and u0 is directly found from the corresponding partial dimensions
dω

	 and d
⊥,‖
	 . From table 1 and (3.1) we find

δ	 = 6 − 3Nϕ′ − Nϕ − Nv. (3.2)



Critical behaviour of a fluid in a random shear flow 13601

Dimensional considerations should be augmented by the observation that all the
1-irreducible functions without the field ϕ′ (in particular, all functions involving only
velocity fields) contain closed circuits of retarded propagators 〈ϕ′ϕ〉0, vanish and do not
require counterterms; see e.g. [3]. The action (2.11) is even with respect to the reflection
ϕ′ → −ϕ′, ϕ → −ϕ, so that all correlation functions with odd total number of the fields ϕ′

and ϕ also vanish (no diagrams for such functions can be constructed). It is therefore sufficient
to consider only 1-irreducible functions with Nϕ′ � 1 and even sum Nϕ′ +Nϕ . Straightforward
analysis of expression (3.2) then shows that superficial UV divergences can be present only in
the following 1-irreducible functions:

〈ϕ′ϕ′〉 (δ = 0) with the counterterm ϕ′ϕ′,
〈ϕ′ϕ〉 (δ = 2) with the counterterms ϕ′∂tϕ, ϕ′∂2

‖ϕ, ϕ′∂2
⊥ϕ, τ0ϕ

′ϕ,

〈ϕ′ϕ3〉 (δ = 0) with the counterterm ϕ′ϕ3,

〈ϕ′ϕv〉 (δ = 1),

for which the counterterm necessarily reduces to the form ϕ′(vi∂i)ϕ = ϕ′v∂‖ϕ. All such terms
are present in the action (2.11), so that our model appears multiplicatively renormalizable.

The superficial divergence in the function 〈ϕ′ϕvv〉 with δ = 0 and the counterterm ϕ′ϕv2,
allowed by the dimension, is in fact forbidden by the Galilean symmetry. Furthermore, the
latter requires that the counterterms ϕ′∂tϕ and ϕ′(vi∂i)ϕ enter the renormalized action only in
the form of Lagrangian derivative ϕ′∇tϕ.

The arguments based on the Galilean symmetry are usually applied to the velocity field
governed by the Navier–Stokes equation, and generally become invalid for synthetic Gaussian
velocity ensembles. It turns out, however, that for a Gaussian ensemble with vanishing
correlation time the Galilean symmetry takes place; see e.g. [21]. This issue, along with the
consequences of the Galilean invariance for the renormalization in our model, is discussed in
appendix A in detail.

We conclude that the renormalized action can be written in the form

SR(ϕ′, ϕ)=Sv(v) + Z1σ(ϕ′)2 + ϕ′[−Z2σ∇tϕ + Z3∂
2
⊥ϕ + Z4u∂2

‖ϕ −Z5τϕ −Z6gu1/2µεϕ3/6
]
.

(3.3)

Here σ, τ, u,w and g are renormalized analogues of the bare parameters (with the subscripts
‘0’) and µ is the reference mass scale (additional arbitrary parameter of the renormalized
theory). Since the first term Sv(v) is not renormalized, the amplitude D0 is expressed in
renormalized parameters as

D0 = w0u0/σ0 = wuµξ/σ. (3.4)

Expression (3.3) is equivalent to the multiplicative renormalization of the fields ϕ →
ϕZϕ, ϕ′ → ϕ′Zϕ′ and the parameters

σ0 = σZσ , τ0 = τZτ , u0 = uZu, g0 = gµεZg, w0 = wµξZw (3.5)

(no renormalization of the velocity field is needed: Zv = 1). The constants in equations (3.3)
and (3.5) are related as follows:

Z1 = ZσZ2
ϕ′ , Z2 = ZσZϕ′Zϕ, Z3 = Zϕ′Zϕ,

Z4 = ZuZϕ′Zϕ, Z5 = ZτZϕ′Zϕ, Z6 = ZgZ
1/2
u Zϕ′Z3

ϕ,
(3.6)

and from relation (3.4) one obtains

ZuZwZ−1
σ = 1. (3.7)
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The renormalization constants must be chosen to capture all the divergences at ε, ξ → 0,
so that the correlation functions of the renormalized model (3.3) have finite limits for ε, ξ = 0
when expressed in renormalized parameters σ,µ and so on. This requirement determines
Z’s up to regular parts, which are specified by the choice of the renormalization scheme. In
practical calculations (see appendix B for the details) we use the minimal subtraction (MS)
scheme, which is most convenient from the calculational viewpoints. However, one important
remark is in order here. In models with a single UV regulator (say, model A with ε), the
UV singularities manifest themselves as poles in ε, and the MS scheme is defined such that
all the renormalization constants have the forms Z = 1 + only poles in ε. In models with
several regulators, like ε and ξ in our case, there are subtleties in defining the renormalization
scheme: for example, the ratio ε/ξ can be treated as a pole or a finite quantity. According to
the general theory of analytic regularization [41], the constants Z can be chosen such that the
renormalized correlation functions appear analytic in the full set of regulators; in this scheme,
the quantities like ε/ξ are treated as singularities and are included into Z’s.

Another possibility, which we adopt in our calculation and refer to as the MS scheme, is
to consider ε and ξ as small parameters of the same order and, therefore, to treat their ratios
as non-singular and to include into Z’s only poles in ε, ξ and all their linear combinations
(kε + pξ) with integers k and p (the latter indeed appear in higher order diagrams). In other
words, one can set ξ = aε and arrive at the conventional situation with the single UV regulator
ε and the unambiguously defined MS scheme, in which the renormalization constants have the
forms ‘1+ only poles in ε’. In addition to the two dimensionless parameters—renormalized
coupling constants g and w, the coefficients in Z’s depend on the ratio a = ξ/ε and can be
singular for some special values of a (e.g. for a = 0).

Although the intermediate quantities (renormalization constants and RG functions)
explicitly depend on the choice of the renormalization scheme, the final physical results
(existence and stability of the fixed points and the values of the corresponding critical
exponents) must be the same. These general statements were confirmed in [42] by the practical
calculation in an analogous two-regulator model (namely, for the stochastic Navier–Stokes
equation near two dimensions). There, the renormalization constants and RG functions
(β functions and anomalous dimensions) were calculated explicitly in the two different
renormalization schemes, described above, to the two-loop order.

It remains to note that in the leading-order approximation all these subtleties appear not
too important in our model, and the independence of the results on the renormalization scheme
can readily be verified from the explicit expressions for the diagrams; see the remark below
equation (B.5).

4. RG functions and RG equations

Let us recall an elementary derivation of the RG equations; a detailed discussion can be found in
the monographs [2, 3]. The RG equations are written for the renormalized correlation functions
GR = 〈 · · · 〉R , which differ from the original (unrenormalized) ones G = 〈 · · · 〉 only
by normalization and choice of parameters, and therefore can equally be used for analysing
the critical behaviour. The relation SR(, e, µ) = S(, e0) between the functionals (2.11)
and (3.3) results in the relations

G(e0, . . .) = Z
Nϕ

ϕ Z
Nϕ′
ϕ′ GR(e, µ, . . .) (4.1)

between the correlation functions. Here, as usual, Nϕ and Nϕ′ are the numbers of corresponding
fields entering into 	 (we recall that in our model Zv = 1); e0 = {σ0, τ0, u0, w0, g0} is the full
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set of bare parameters and e = {σ, τ, u,w, g} are their renormalized counterparts; the ellipsis
stands for the other arguments (times, coordinates, momenta, etc).

We use D̃µ to denote the differential operation µ∂µ for fixed e0 and operate on both sides
of equation (4.1) with it. This gives the basic RG differential equation

{DRG + Nϕγϕ + Nϕ′γϕ′ }GR(e, µ, . . .) = 0, (4.2)

where DRG is the operation D̃µ expressed in the renormalized variables:

DRG ≡ Dµ + βg∂g + βw∂w − γuDu − γσDσ − γτDτ . (4.3)

Here we have written Dx ≡ x∂x for any variable x, and the anomalous dimensions γ are
defined as

γF ≡ D̃µ ln ZF for any quantity F, (4.4)

and the β functions for the two dimensionless couplings g and w are

βg ≡ D̃µg = g[−ε − γg], βw ≡ D̃µw = w[−ξ − γw], (4.5)

where the second equalities come from the definitions and relations (3.5).
Equations (3.6) result in the following relations between the anomalous dimensions:

γ1 = γσ + 2γϕ′ , γ2 = γσ + γϕ′ + γϕ, γ3 = γϕ′ + γϕ,

γ4 = γu + γ3, γ5 = γτ + γ3, γ6 = γg + γu/2 + γϕ′ + 3γϕ,
(4.6)

while from (3.7) one obtains

γu + γw − γσ = 0. (4.7)

The dimensions γ1 −γ6 are calculated from the corresponding renormalization constants using
definition (4.4), while the RG functions entering equation (4.3) are easily found from relations
(4.6) and (4.7):

2γϕ′ = γ1 − γ2 + γ3, 2γϕ = γ3 − γ1 + γ2,

γu = γ4 − γ3, γτ = γ5 − γ3, γσ = γ2 − γ3,

γw = γ2 − γ4, γg = γ1 − γ2 − 3γ3/2 − γ4/2 + γ6.

(4.8)

The diagrams needed for our second-order calculation of the critical dimensions are
presented in appendix B. One can see that the leading contributions to different renormalization
constants (and hence to the corresponding anomalous dimensions) are of different order:
Z1,2,3 = 1 + O(g2), Z5,6 = 1 + O(g), Z4 = 1 + O(w). Practical calculation of the
renormalization constants and anomalous dimensions are discussed in appendix B, and here
we only present the leading-order results for the dimensions (4.6):

γ1 = γ2 = bκ1g̃
2 + O(g̃3), γ3 = κ1g̃

2/6 + O(g̃3), γ6 = −3κ2g̃ + O(g̃2),

γ4 = w̃ + κ1g̃
2/6 + O(g̃3), γ5 = −κ1g̃ + O(g̃2),

(4.9)

where we have denoted g̃ = g/(16π2), w̃ = w/(4π2) and b = ln(4/3) ≈ 0.287 683; in
counting the orders it is assumed that w = O(g). For generality, we give the results for
the O(N)-symmetric model with an N-component order parameter in (2.3); the additional
symmetry factors are κ1 = (N + 2)/3 and κ2 = (N + 8)/9. In the following, we will only give
the results for N = 1 and denote the new couplings g̃, w̃ simply by g,w. Then expressions
(4.9) take on the form

γ1 = γ2 = bg2 + O(g3), γ3 = g2/6 + O(g3), γ6 = −3g + O(g2),

γ4 = w + g2/6 + O(g3), γ5 = −g + O(g2).
(4.10)
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5. Fixed points and scaling regimes

It is well known that possible large-scale scaling regimes of a renormalizable model are
associated with IR attractive fixed points of the corresponding RG equations. In our model,
the coordinates g∗, w∗ of the fixed points are found from the equations

βg(g∗, w∗) = 0, βw(g∗, w∗) = 0, (5.1)

with the β functions given in (4.5). The type of a fixed point is determined by the matrix

� = {�ij = ∂βi/∂gj }, (5.2)

where βi denotes the full set of the β functions and gj = {g,w} is the full set of couplings.
For IR stable fixed points the matrix � is positive, i.e., the real parts of all its eigenvalues are
positive.

From definitions (4.5), relations (4.8) and explicit expressions (4.10) for the anomalous
dimensions, we derive the following leading-order expressions for the β functions:

βg = g[−ε + 3g + w/2], βw = w[−ξ + w] (5.3)

with the corrections in the square brackets of order O(g2) and higher. From equations (5.1)
and (5.3) we can identify four different fixed points; the matrix � appears triangular for all
of them, so that its eigenvalues are simply given by the diagonal elements �g = ∂βg/∂g and
�w = ∂βw/∂w.

1. Gaussian (free) fixed point: g∗ = w∗ = 0; �g = −ε,�w = −ξ .
2. w∗ = 0 (exact result to all orders), g∗ = ε/3; �g = ε,�w = −ξ . In this regime, effects

of the velocity field are irrelevant, the isotropy violated by the velocity ensemble is restored
and the leading terms of the IR behaviour coincide exactly with those of the equilibrium model
A. In particular, the basic critical dimensions do not depend on ξ and coincide to all orders
in ε with the well-known static exponents η, ν for the Landau–Ginzburg model (2.3) and the
dynamic exponent z for model A (see e.g. [3, 5]). However, corrections to the leading-order
asymptotic expressions will be anisotropic and different from those for model A; in particular,
the dependence on ξ will appear e.g. due to the correction exponent �w.

3. g∗ = 0 (exact result to all orders), w∗ = ξ ; �g = (−ε + ξ/2),�w = ξ . In this
regime, the nonlinearity ϕ3 in the stochastic equation (2.1) becomes irrelevant, and we arrive
at the model of a linear convection–diffusion equation for a passive scalar field ϕ. For the
strongly anisotropic Gaussian velocity ensembles of the type (2.7), (2.8), such models were
investigated in detail in [23–25] (mostly for d = 2, but beyond the scope of any perturbation
theory).

4. g∗ = (ε − ξ/2)/3, w∗ = ξ ; �g = (ε − ξ/2), �w = ξ . This fixed point corresponds to
a new nontrivial IR scaling regime, in which both the nonlinearities in the stochastic equation
for ϕ are important; the corresponding critical dimensions depend essentially on both the
RG expansion parameters ε and ξ and are calculated as double series in these parameters;
see section 6. This behaviour reveals strong anisotropy and belongs to a new, completely
non-equilibrium, universality class in the sense that the equal-time correlation functions are
not given by a Gibbs measure exp{−H(ϕ)} with a Hamiltonian of the type (2.3).

In figure 1, we show the regions of IR stability for all these fixed points in the ε–ξ

plane, that is, the regions in which the eigenvalues �g,w for a given fixed point are both
positive.

In the leading-order approximation (5.3), all the boundaries of the regions of stability
are given by straight lines; there are neither gaps nor overlaps between the different regions.
However, experience with analogous two-parameter models (e.g. double expansion for the
stochastic Navier–Stokes equation near two dimensions [42]) suggests that such a behaviour
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Figure 1. Regions of stability of the fixed points in the model (2.11).

can rather be an artefact of the leading-order approximation: the boundaries become curved
and overlaps can appear if the higher order corrections in the β functions are taken into account.
In our model, this definitely happens for the boundary between the regions of stability of the
fixed points 2 and 4, as can be argued without practical calculation of the corrections to
functions (5.3); see section 6.

One can see that the interval of the most realistic values of these parameters, ε = 1 (d = 3)
and 0 < ξ < 2 (see the remark above equation (2.9)), belongs completely to the region of
stability of the most nontrivial fixed point 4. It is also worth noting that, for all fixed points,
the coordinates g∗, w∗ are positive in the regions of their IR stability, in agreement with the
physical meaning of these parameters: w enters the amplitude in a pair correlation function
and g > 0 is required for the stability of the static model (2.3).

6. Critical scaling and critical dimensions

Let F be some function of n independent arguments {x1, . . . , xn} satisfying the following
scaling relation:

F(λα1x1, . . . , λ
αnxn) = λαF F (x1, . . . , xn) (6.1)

with a set of constant coefficients (scaling dimensions) {α1, . . . , αn, αF } and any positive
parameter λ > 0. Differentiating (6.1) with respect to λ and setting λ = 1 gives the first-order
differential equation

n∑
i=1

αiDiF (x1, . . . , xn) = αF F(x1, . . . , xn), Di = xi∂/∂xi, (6.2)

whose general solution has the form

F(x1, x2, . . . , xn) = x
αF /α1
1 F̃

(
x2

x
α2/α1
1

, . . . ,
xn

x
αn/α1
1

)
, (6.3)
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where F̃ is an arbitrary function of (n − 1) arguments. Obviously, the dimensions are
determined up to an overall constant factor (replace λ → λa in (6.1) or multiply (6.2) by a);
this arbitrariness can be fixed e.g. by setting α1 = 1. If αi = 0 for some xi , this variable is not
dilated in (6.1) and the corresponding derivative in (6.2) is absent.

It is well known that the leading term of the large-scale asymptotic behaviour of a
(renormalized) correlation function satisfies the RG equation (4.2) in which the renormalized
couplings are replaced with their fixed-point values. In our case, this gives

{Dµ − γ ∗
u Du − γ ∗

σ Dσ − γ ∗
τ Dτ + Nγ ∗

}GN
= 0, (6.4)

where γ ∗
u = γu(g = g∗, w = w∗) and so on, and GN

is the renormalized correlation function
with N = {Nϕ′ , Nϕ,Nv} fields. The summation over all types of fields in the last term of
(6.4) and analogous expressions below is implied; cf equation (3.1).

Canonical scale invariance of the function GN
with respect to the three independent

canonical dimensions (see section 3) can be expressed by the differential equations of the form
(for definiteness, we consider the momentum–frequency representation)

{Dω − Dσ − Nϕ′ − Nv}GN
= 0, (6.5)

{D⊥ + Dµ + 2Dσ + 2Dτ + 2Du − (Nϕ′ + Nϕ)(d − 3)/2}GN
= 0, (6.6)

{D‖ − 2Du − (Nϕ′ + Nϕ)/2 + Nv}GN
= 0, (6.7)

where D‖ = k‖∂/∂k‖,D⊥ = k⊥∂/∂k⊥ and the data from table 1 have been used.
Clearly, equation (6.4) corresponds to the scaling behaviour (6.1) of the function GN

upon the dilatation of the parameters σ,µ, u and τ and at fixed momentum and frequency
variables; equation (6.5) deals with dilatation of the frequencies and other parameters at fixed
momenta, and so on. We are interested in the critical scaling behaviour, that is, behaviour of the
type (6.1) in which all the IR relevant parameters (momenta/coordinates, frequencies/times,
deviation of the temperature from its critical value τ ∝ (T − Tc)) are dilated, while the IR
irrelevant parameters (those which remain finite at the fixed point: σ,µ and u) are fixed [2, 3].
Thus, we combine equations (6.4)–(6.7) so that the derivatives with respect to the IR irrelevant
parameters are eliminated; this gives the desired equation which describes the critical scaling
behaviour:

{D⊥ + �‖D‖ + �ωDω + �τDτ − N�}GN
= 0. (6.8)

Here �⊥ = 1 is the normalization condition, while the critical dimensions of any other IR
relevant parameter F are given by the general expression

�F = d⊥
F + �‖d

‖
F + �ωdω

F + γ ∗
F (6.9)

with the canonical dimensions from table 1 and

�ω = 2 + γ ∗
σ , �‖ = (2 + γ ∗

u )/2. (6.10)

Below we will concentrate on the two nontrivial fixed points 2 and 4; see section 5.
At the fixed point 2, where w∗ = 0 exactly, all the anomalous dimensions γ ∗

F in the
RG equation (4.2), (4.3) coincide with their counterparts for the equilibrium model A. In
particular, γ ∗

u = γ ∗
4 − γ ∗

3 = 0 and therefore �‖ = 1; the SO(d) symmetry violated by
the velocity ensemble is restored. Furthermore, from the fluctuation–dissipation theorem it
follows that γ ∗

1 = γ ∗
2 ; see e.g. [3, 5]. The standard notation for this equilibrium case is

�ϕ = d/2 − 1 + η/2, �τ = 1/ν, �ω = z, (6.11)

while for ϕ′ the aforementioned relations for γ ∗
F give �ϕ′ = �ϕ + z = d/2 − 1 + z + η/2.

The exponents η and ν can be found directly from the static model (2.3); they are well
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known from the 4 − ε, 2 + ε and 1/N expansions, real-space RG (all augmented by various
summations), high-temperature expansions for the Ising model (considered most reliable) and
Monte Carlo simulations. The values recommended by [2, 3] are η = 0.0375 ± 0.0025 and
ν = 0.6310 ± 0.0015 (the Borel summation of fifth-order results). For z only two terms of
the 4 − ε expansion are known: z = 2 + 0.726(1 − 0.1885ε)η [43]; there are also four-loop
results in the real-space RG [44] and leading-order results in 2 + ε and 1/N expansions; see
the discussion in [3–5] and references therein.

Let us turn to the fixed point 4. We are going to find the critical dimensions entering
the equations (6.8) and (6.10) to the second order of the generalized ε expansion, that is, the
double expansion in ε and ξ with the convention that ξ = O(ε). From relations (4.8) and
(4.10) it follows that γσ,ϕ,ϕ′ = O(g2) and γu = O(w), so that in order to find γ ∗

σ,ϕ,ϕ′ with
the accuracy of O(ε2) it is sufficient to calculate the coordinate g∗ only to the leading order
O(ε). At first sight, the second-order calculation of the coordinates g∗, w∗ is needed to find
the O(ε2) contribution in the dimension γ ∗

u . However, this calculation can be avoided with
the aid of the exact identity

γ ∗
u = ξ + γ ∗

σ , (6.12)

which follows from the relations βw = w[−ξ − γw] in (4.5) and γu + γw = γσ in (4.7) for any
fixed point at which βw = 0 and w∗ �= 0. Then from (6.10) it follows that

2�‖ = �ω + ξ (6.13)

exactly, and from the explicit expressions (4.10) one obtains (ε̄ ≡ ε − ξ/2)

�ϕ = 1 − ε̄/2 + (6b + 1)ε̄2/486,

�ϕ′ = 3 − ε̄/2 + (10b − 1)ε̄2/72,

�‖ = 1 + ξ/2 + (6b − 1)ε̄2/108,

�ω = 2 + (6b − 1)ε̄2/54,

�τ = 2 − ε̄/3

(6.14)

with corrections of order O(ε2) for �τ and O(ε3) for the other dimensions; we recall that
b = ln(4/3) ≈ 0.287 683. For the velocity field, relations (6.9), (6.10) and (6.12) can be
combined to give the exact expression

�v = 1 + γ ∗
σ − γ ∗

u /2 = (�ω − ξ)/2, (6.15)

in agreement with the explicit factorized form of the velocity correlation function (2.7), (2.8).
It is worth noting that in the approximation (6.14) all the dimensions appear polynomial

in the regulators ε and ξ (no contributions like e.g. ε2/ξ or ε2/(ε − ξ/2)) and depend on them
only through the single combination ε̄ ≡ ε − ξ/2 (except for the simple second term in �‖).
This reminds of the situation encountered earlier for a model of ferromagnets with extended
quenched impurities, in which the two-loop critical dimensions appear analytic in the two UV
regulators [37] although the RG functions and coordinates of the fixed points (calculated in
the MS scheme) involve their ratios [36, 37]. Below we try to give some arguments that, at
least in our model, this property will hold to all orders of the perturbation theory. In contrast,
the dependence on the single parameter ε̄ is a consequence of a relatively simple form of
the RG functions in the approximation (4.10), and we do not expect it to hold in the higher
orders.

As already mentioned at the end of section 3, the general theory of analytic regularization
establishes that the anomalous dimensions can be made analytic in the full set of regulators, if
a special renormalization scheme is chosen [41]. The coordinates of the fixed points, obtained
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by solving equations (5.1), can nevertheless appear non-analytic already in the leading-order
approximation, as it happens for the stirred Navier–Stokes equation near two dimensions
[42, 45]. Then the critical dimensions, obtained by the substitution of those coordinates
into the anomalous dimensions, can also become non-analytic. However, if the anomalous
dimensions in any given-order approximation are analytic not only in the regulators, but also
in the coupling constants, and if the coordinates of the fixed points happen to be analytic in the
regulators in the leading-order approximation, then it can be directly verified that they can be
systematically calculated as multiple series in the regulators to all orders, and, consequently,
this will be equally true for the critical dimensions. This is exactly our case, as follows from
the explicit leading-order approximations for g∗ and w∗ given in section 5.

If the MS scheme (as defined at the end of section 3) is used in the calculation, the
non-analytic contributions in the regulators can occur in the renormalization constants and
anomalous dimensions, but they must disappear from the critical dimensions, because the
latter do not depend on the renormalization scheme. This probably explains the cancellations
observed in [37] in the two-loop approximation.

The key difference with the problem studied in [42, 45] is that our model remains
multiplicatively renormalizable for the special cases g = 0, w �= 0 and w = 0, g �= 0 (one
interaction does not generate the other one as a counterterm in the renormalization procedure),
and all the renormalization constants and anomalous dimensions are just double series in g
and w. In contrast, the model studied in [45] is not closed with respect to renormalization if
one of its coupling constants is set equal to zero. As a consequence, the coupling constant
corresponding to this ‘generated’ counterterm enters the denominators of the anomalous
dimensions, and the arguments given above do not work: the coordinates of the fixed points
become non-analytic in the regulators already in the leading order [45].

It should be noted, however, that the general theory of renormalization and analytic
regularization, which we took to apply to our case, was developed mostly in connection
with local relativistic quantum field theories and their Euclidean counterparts. Its extension
to field theoretic models, related to stochastic differential problems and involving quenched
disorder, random velocity fields and so on, although supported by a great number of various
examples, can hardly be rigorously justified in general. Thus, some doubts can remain about
the validity of the above arguments to all higher orders of the perturbation theory. If non-
analytic contributions nevertheless occur in the higher order corrections to expressions (6.14),
the double expansion for the dimensions should be understood as the expansion in ε with
ξ = aε, a = O(1) and possible singularities in its coefficients for some values of a.

It remains to note that the critical dimensions (6.14) coincide up to the order O(ε) with
their counterparts in (6.11) at the ray ε > 0, ξ = 0, the boundary between the regions of
stability of the corresponding fixed points 2 and 4 (determined in section 5 in the first-order
approximation for the β functions), but differ in order O(ε2). This is a clear indication that a
straight boundary without gaps and overlaps is an artefact of the first-order approximation: the
boundaries become curved and overlaps or gaps can appear when the higher order corrections
to the β functions are taken into account, as happens in the analogous double expansion for
the stochastic Navier–Stokes equation near two dimensions [42].

7. Discussion and conclusion

We have studied effects of turbulent mixing and stirring on the critical behaviour of a fluid
system (binary mixture, nematic liquid crystal) with a purely relaxational dynamics of a
non-conserved order parameter, known as model A [3–5]. The velocity was modelled
by Gaussian statistics with vanishing correlation time and strongly anisotropic correlation



Critical behaviour of a fluid in a random shear flow 13609

function ∝δ(t − t ′)
/
k

d−1+ξ

⊥ ; see equations (2.7), (2.8). Such ensembles were employed earlier
in [23–25] in the analysis of the two-dimensional passive turbulent advection (linear equation
for the scalar field).

The model, originally described by a stochastic differential equation (2.1)–(2.4), can be
reformulated as a multiplicatively renormalizable field theory (2.11), which allows one to
apply the field theoretic RG to study its critical behaviour. The model reveals four different IR
scaling regimes, related with the four different fixed points of the RG equations; their regions
of stability in the ε–ξ plane are identified in the leading order. These regimes correspond to (1)
Gaussian (free) model, (2) equilibrium critical dynamics (standard universality class of model
A, interaction with the velocity field is irrelevant), (3) linear passive scalar advection (the ϕ4

term in the Landau–Ginzburg Hamiltonian is irrelevant) and (4) the most nontrivial strongly
anisotropic scaling regime in which both the interactions are important; it corresponds to a
new non-equilibrium universality class.

It was shown that the equilibrium critical regime (model A) becomes unstable for the
realistic range of parameters d < 3 and 0 < ξ < 2, which includes the Kolmogorov spectrum
(ξ = 4/3) and Batchelor limit (ξ = 2). It is replaced with the new non-equilibrium regime;
the corresponding critical exponents are calculated to second order of the corresponding RG
expansion, which in this case takes on the form of the double expansion in ε and ξ ; explicit
expressions are given in (6.14).

Let us discuss the consequences of the general scaling relations, derived in section 6, for
the most interesting special case of the pair correlation function. They result in the scaling
expression

〈ϕ(x + r, t + t ′)ϕ(x, t ′)〉 = r
−2�ϕ

⊥ F
(
τ0r

�τ , t
/
r

�ω

⊥ , r‖
/
r

�‖
⊥

)
, (7.1)

where r⊥ = |r⊥|, r‖ = |r‖| and F is some scaling function. It is usually assumed that F has
finite limits for τ0 ∝ (T − Tc) = 0 (that is, exactly at the critical point) and/or for t = 0
(equal-time correlation function). Then from (7.1) one obtains

〈ϕ(x + r, t)ϕ(x, t)〉 = r
−2�ϕ

⊥ F̃
(
r‖/r

�‖
⊥

)
(7.2)

with another nontrivial function F̃(x) = F(0, 0, x). The last two arguments in the scaling
representation (7.1) can also be chosen in the form r⊥/L⊥(t) and r‖/L‖(t) with two different
characteristic length scales

L⊥(t) ∼ tα⊥ , L‖(t) ∼ tα‖ , α⊥ = 1/�ω, α‖ = �‖/�ω, (7.3)

with the exact relation 2α‖ = 1 + ξα⊥ following from equation (6.13). For the most realistic
values ε = 1 (d = 3) and ξ = 4/3 (Kolmogorov spectrum of the velocity) explicit results
(6.14) give

�ω ≈ 2.0015, α⊥ ≈ 0.4996 and α‖ ≈ 0.833, (7.4)

while for ε = 1 and ξ = 2 (Batchelor limit, smooth velocity field) in the same approximation
one obtains

�ω = 2, α⊥ = 0.5 and α‖ = 1, (7.5)

with possible corrections from the O(ε3) terms in (6.14). It is worth noting that the
O(ε2) contributions to these results are almost negligible, so that �ω appears almost
indistinguishable from its canonical value �ω = 2. In contrast, the analogue of Fisher’s
exponent η = ξ/2 + (6b + 1)ε̄2/243, determined from (6.14) using the ‘equilibrium’ relation
(6.11), markedly deviates from its canonical (vanishing) value due to the O(ξ) term: η ≈ 2/3
for ξ = 4/3 and η ≈ 1 for ξ = 2. This is reminiscent of the observation made in [9, 10]
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(however, for a conserved order parameter and a non-random velocity) that the critical
fluctuations are suppressed by the flow and the behaviour of the system becomes close to
the mean-field limit in a strong shear; see also the discussion in [13].

The existence of two different length scales (7.3) with power-law dependence on the time
was established in a number of studies within numerical simulations [15, 16], approximate
analytical solutions [17] and exactly soluble simplified models [18]. As a rule, those
authors dealt with binary mixtures in the coexistence (two-phase) region (finite and negative
τ0 ∝ (T − Tc)) in the presence of a uniform laminar shear flow, while our results refer
to a system near its critical point and in a chaotic velocity ensemble. (For finite τ0 < 0,
phase separation occurs at length scales comparable to the typical size of turbulent eddies, the
situation which is much more difficult to achieve in practice in the vicinity of the critical point
(τ0 � 0), at least for binary mixtures; see also the discussion in [8].) Thus, a priori one should
not have expected a good quantitative agreement for the exponents in (7.3). Surprisingly
enough, our answers (7.4) and (7.5) for the exponents appear not inconsistent with the results
α⊥ = 0.5 and α‖ = 3/2, derived earlier in [17] for a non-conserved order parameter in a
uniform non-random shear within the so-called Ohta–Jasnow–Kawasaki approximation [46].
Although the values of α‖ are rather different in [17] and (7.4), (7.5), they are always markedly
larger than α⊥. The same inequality α‖ > α⊥ for the exponents was also established in two
dimensions [17] and for exactly soluble models [18].

Let us briefly discuss the general case (2.5) with u �= 0. Nonvanishing mean velocity u
gives rise to the additional term σ0ϕ

′(ui∂i)ϕ = σ0ϕ
′(u∂‖)ϕ with u = |u| in the action (2.11),

which simply results in the replacement ω → ω − u · k = ω − uk‖ in the propagators (2.15),
(2.16) and r‖ → r‖ + ut in the final scaling expressions like (7.1). This fact can be compared
with the observation made in [16, 17] that, for u �= 0, the proper scaling variables are not
simply related to parallel and perpendicular directions. The dependence on u disappears at
t = 0, that is, in the equal-time correlation function (7.2).

Another interesting quantity is the ‘crossover exponent’ χ in the relation δTc ∝ Reχ

between the Reynolds number Re and the shift δTc of the critical temperature due to the
mixing, with experimental estimates χ ∼ 1.4–2.1 [12]. In the RG framework, this exponent
can be identified [7, 8] as χ = ν|�min|, where ν � 0.63 is the classical critical exponent (6.11)
for the Landau–Ginzburg model (2.3) and �min is the minimal (maximal by the modulus)
negative eigenvalue of the � matrix (5.2) at the equilibrium scaling regime (model A or, in
our notation, fixed point 2). In our case �min = �w = −ξ for point 2; see section 5. This
gives χ � 1.2 for the Kolmogorov spectrum (ξ = 4/3) and χ � 1.26 for the Batchelor limit,
which is better than the estimate χ � 0.8 obtained in [10] for strongly anisotropic non-random
shear but worse than the RG result χ � 1.74 obtained in [7, 8] for a random isotropic velocity
ensemble with the velocity spectrum ∝ 1/k2. Of course, the disagreement can be explained
by the non-conservation of the order parameter in our model. (In this connection it should
be mentioned that the discussion of section VI in [8] for the general exponent in the velocity
correlation function, denoted as 1/k2+aε in equation (6.1) of [8], contains an error: the second
β function in (6.8) must be βλ = −λ̃R{(1 + a)ε − · · ·}. Thus, the conclusions made in the
following discussion about the independence of the critical exponents on a (in our notation,
on the relation between the two RG expansion parameters ε and ξ ) can be erroneous and must
be revisited.)

It remains to note that for d < 3 and not too small ξ , the fixed point 4 becomes unstable
while point 3 becomes IR attractive (see figure 1), the ϕ4 interaction in (2.3) becomes irrelevant
and the IR behaviour of the model coincides with that of the linear passive scalar advected
by the anisotropic Gaussian velocity ensemble (2.7), (2.8). For d = 2, this regime was
investigated in detail in [23–25].
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We may conclude that our simplified model of a non-conserved order parameter and a
Gaussian velocity ensemble captures important characteristics of a real second-order phase
transition in a stirred fluid system: persistence of a critical scaling regime; emergence of a new
non-equilibrium universality class with a new set of critical exponents, rather different from the
classical ones; existence (for a strongly anisotropic velocity ensemble) of two different length
scales (with a power-law time dependence), and so on. Further investigation should take into
account conservation of the order parameter and its interaction with other thermodynamical
degrees of freedom (mode–mode coupling), compressibility, non-Gaussian character and finite
correlation time of the velocity field, and so on. This work is now in progress.
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Appendix A. Consequences of the Galilean symmetry

In this appendix, we will explore consequences of the Galilean symmetry for the
renormalization of the model (2.11). The models with synthetic Gaussian velocity ensembles
are, as a rule, not invariant with respect to the Galilean transformations. Nevertheless, if the
velocity is not correlated in time, nontrivial parts of the 1-irreducible correlation functions
appear invariant (more precisely, see below), and the Galilean symmetry can be used to restrict
the form of the counterterms. In this sense, the symmetry of the counterterms is higher than
the symmetry of the action functional.

For most of the following discussion, a precise form of the nonlinearity in (2.1) is
unessential; it is only important that it is consistent with Galilean symmetry. The velocity
field will be taken divergence-free, Gaussian, with zero mean and the correlator

〈vi(t, x)vj (t
′, x′)〉 = δ(t − t ′)Dij (x − x′). (A.1)

Our model (2.7), (2.8) corresponds to a special choice of the function Dij , but in the following
its precise form is also unessential.

Field theoretic formulation (2.11) means that the generating functionals of total (G(A))

and connected (W(A)) correlation functions of the original stochastic problem can be
represented by the functional integral of the form

G(A) = exp W(A) =
∫

D exp{S() + A}. (A.2)

Here and below, we denote by  = {ϕ′, ϕ, v} the full set of fields and by A = {Aϕ′ , Aϕ, Av}
the full set of sources; in the expressions like

A =
∑


∫
dx A(x)(x)

summation over all types of the fields, integration over their arguments x = {t, x} and
summation over their vector indices are always understood. All the normalization factors are
included into the functional differential D = Dϕ′DϕDv; the normalization G(0) = 1 is
implied.
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The Galilean transformation is defined as

vi(t, x) → ṽi (t, x) = vi(t, x + ut) − ui

for the velocity and

(t, x) → ̃(t, x) = (t, x + ut) (A.3)

for the other fields; here u, the parameter of the transformation, is an arbitrary constant vector.
For the strongly anisotropic ensemble (2.7), (2.8), the vector u must be parallel to v ∼ n; then
the shift of the arguments in (A.3) reduces to x‖ → x‖ + u.

The part of the action (2.11) which corresponds to the stochastic problem (2.1) at fixed v is
clearly invariant: one has to substitute  → ̃ and make the change of variables x + ut → x;
the additional terms ϕ′(ui∂i)ϕ coming from the contribution with ∂t and from the nonlinearity
cancel each other in the covariant combination ϕ′∇tϕ. If the velocity were governed by the
stochastic Navier–Stokes equation with a time-decorrelated random force, the total action
would also be invariant (see e.g. [3]), but for our synthetic ensemble (A.1) variation of the
action Sv(v) in (2.13) is nontrivial:

Sv(̃v) = Sv(v) + uD−1v + O(u2). (A.4)

In the detailed notation,

uD−1v =
∫

dt

∫
dx

∫
dx′uiD

−1
ij (x − x′)vj (t, x′),

where D−1 is the inverse linear operation for D in (A.1) on the transverse subspace.
We stress that for the validity of (A.4) it is crucial that the correlator (A.1) involves the δ

function in time. Indeed, substitution v → ṽ in Sv produces the term∫
dt

∫
dx

∫
dx′vi(t, x + ut)D−1

ij (x − x′)vj (t, x′ + ut), (A.5)

which gives Sv(v) after the change of variables x + ut → x, x′ + ut → x′ due to the fact
that both the fields in (A.5) have the same time argument and therefore the argument of D−1

remains unchanged. For a finite correlation time, expression (A.5) would involve the double
time integral, the argument of D−1 would be shifted by u(t − t ′) and the original action Sv on
the right-hand side of (A.4) would not be formed.

Let us make the substitution  → ̃ in the functional integral (A.2). This is just a change
of integration variables, its Jacobian equals unity, so the integral

G(A) =
∫

D exp{S(̃) + Ã} (A.6)

is in fact independent of the parameter u from (A.3). In particular, this means that its first
variation with respect to u vanishes. Let us denote by δuF () the linear-in-u term in the
Galilean transformed quantity F(̃). Then we have δuv = (u∂)v − u for the velocity,
δu = (u∂) for the other fields and δuS() = δuSv(v) = uD−1v for the action functional.
Substituting these expressions into the first variation of (A.6) gives the identity∫

D{A(u∂) − uAv + uD−1v} exp{S() + A} = 0 (A.7)

with implied summations over all types of fields, integrations and so on. The fields can be
taken outside the integral in (A.7) as variational derivatives with respect to the corresponding
sources,  → δ/δA, which gives for the functional W(A) from (A.2) the following differential
equation in variational derivatives:

A(u∂)
δW(A)

δA
− uAv + uD−1 δW(A)

δAv

= 0. (A.8)
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It is well known that the generating functional 	() of the 1-irreducible correlation
functions (sometimes referred to as ‘effective action’) is obtained from W(A) as the functional
Legendre transform with respect to the sources A (see e.g. [2, 3]):

	() = W(A) − A,
δW(A)

δA
= ,

δ	()

δ
= −A. (A.9)

Here the sources are (implicitly) expressed as functions of the fields for a given W(A) using
the second relation, while the third relation explicitly determines A in terms of  for a given
	(). Substituting (A.9) into (A.8) gives the following equation for 	():

δ	()

δ
(u∂) − u

δ	()

δv
= uD−1v. (A.10)

The left-hand side obviously represents the first variation δu	() of the functional (A.9)
with respect to the Galilean transformation (A.3) of its functional arguments, while the right-
hand side is nothing but the variation δuS() of the action (2.11). It is well known that the
functional (A.9) can be represented as the sum 	() = S() + 	̄() of the action S(),
which contains all the tree (‘loopless’) graphs and the terms not represented by graphs, and the
nontrivial part 	̄() which contains all the graphs with loops (and hence those with all possible
UV divergences); see e.g. [2, 3]. From (A.10) we conclude that the total non-invariance of
	() is brought about by the action term, while the second contribution appears invariant:
δu	̄() = 0.

The last relation holds for arbitrary values of the model parameters, including d, ξ and
the coupling constants (2.18). Therefore, it remains valid in the perturbation theory and is
preserved by the renormalization procedure. We thus may conclude that the contribution of
the counterterms (determined by the nontrivial term 	̄()) must also be Galilean invariant,
in spite of the fact that the total functional 	() is not. This justifies the statements made in
the analysis of the renormalization of our model in section 3: the counterterm ϕ′ϕv2, allowed
by the dimension, is not invariant and therefore it is forbidden; the counterterms ϕ′∂tϕ and
ϕ′(vi∂i)ϕ can appear only in the form of the Galilean covariant combination ϕ′∇tϕ.

Appendix B. Calculation of the Feynman diagrams

In this appendix, we will briefly discuss the main points concerning the calculation of
the renormalization constants and the corresponding Feynman diagrams. In order to find
the anomalous dimensions (4.6) in the approximation (4.9), (4.10), one has to calculate the
1-irreducible correlation functions 〈ϕ′ϕ′〉, 〈ϕ′ϕ〉 to the two-loop order and 〈ϕ′ϕϕϕ〉 to the
one-loop order of the renormalized perturbation theory. The corresponding diagrammatic
expressions are given in figures 2–4 (we do not show some of the diagrams, which are
topologically possible but vanish for special reasons; see below).

The wavy lines denote the pair correlator of the velocity (2.8). The bare propagators
(2.15), (2.16) are denoted by solid lines: the line without a slash denotes the propagator 〈ϕϕ〉0

while the line with one slash denotes 〈ϕϕ′〉0; the slashed ends correspond to the response field
ϕ′. The propagator 〈ϕ′ϕ′〉0 vanishes in any dynamic model of the type (2.11), so the solid
line with two slashed ends does not occur in the diagrams. There are two types of vertices
(shown by thick dots): the quartic one corresponds to the interaction ϕ′ϕ3 and the triple one
corresponds to ϕ′(v∂‖)ϕ. The symmetry coefficients are shown for the one-component scalar
field (N = 1).

All the diagrammatic elements should be expressed in renormalized variables using
the relations (3.3)–(3.7). However, in our approximation Z’s should be retained (with the
appropriate accuracy in g and w) only in the bare terms of the functions 〈 · · · 〉, while in the
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〈ϕ′ϕ′〉 = 2σZ1 +
1

2

No 5

No 1

+
1
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+ + . . .+
1
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Figure 2. 1-irreducible function 〈ϕ′ϕ′〉: relevant one- and two-loop diagrams.

〈ϕ′ϕ〉 = iωσZ2 + p2
⊥Z3 + up2

‖Z4 + τZ5 + +

No 6

+
1

2

No 7 No 9
No 8

+

+ . . .

No 11No 10

+
1
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Figure 3. 1-irreducible function 〈ϕ′ϕ〉: relevant one- and two-loop diagrams.

〈ϕ′ϕϕϕ〉 = Z6
+ 3 +

No 12

No 13

+
1

2
+

1

2

No 14

+ . . .

Figure 4. 1-irreducible function 〈ϕ′ϕϕϕ〉: one-loop approximation.

diagrams they should be replaced with unities. In other words, the passage to renormalized
variables in the diagrams is provided by the simple substitutions σ0 → σ, u0 → u, τ0 →
τ, g0 → gµε and w0 → wµξ .
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In the practical calculation we use the MS scheme, where the renormalization constants
are independent of the specific choice of the IR regularization. It is then possible to calculate
the constants directly in the critical (‘massless’) model, that is, at τ = 0 in the renormalized
analogues of the lines (2.15), (2.16). Then, in the calculation of the constants Zi with i �= 5,
the diagrams involving self-contracted propagators 〈ϕϕ〉0 can be treated as zero and, for this
reason, are not shown in the figures. The only exception is made for the one-loop diagram 7
with a self-contracted solid line in the function 〈ϕϕ′〉 needed for the calculation of Z5, in which
τ should be retained. Depending of the type of a diagram and specific way of calculation, the
IR regularization is either provided by the sharp cut-off or not needed at all (see below). The
diagrams with self-contracted lines 〈ϕϕ′〉0 should also be discarded according to the general
rules of the diagrammatic technique for the dynamic models of the type (2.11); see [2, 3].

Owing to specific properties of our model, many diagrams still shown in the figures
vanish identically or appear UV finite and therefore do not contribute to the renormalization
constants.

Since the velocity field is transverse (divergence-free), the derivative ∂‖ at the triple vertex
can, if desired, be moved onto the response field using the integration by parts; see equation
(2.12). Thus, in any diagram involving N external vertices of the type ϕ′(v∂‖)ϕ, the factor p N

‖
with external momenta p‖ will be taken outside the corresponding integrals over the internal
momenta and frequencies. This reduces the dimension of the integrand and can make the
diagram UV finite. In particular, this makes UV finite diagrams 1, 3, 4, 13 and 14 (the latter
in fact vanishes, see below).

Diagrams 5, 10, 11 and 14 effectively involve closed circuits of retarded propagators 〈ϕϕ′〉0

(self-contracted chains of step functions; see equation (2.15)) and therefore also vanish. Such
an effect is well known for dynamic models of the type (2.11) and is related to causality; see
[2, 3]. However, for diagrams 11 and 14 it is crucial here that the propagator of the velocity
involves the δ function in time. These arguments, however, do not apply to the one-loop
diagram 6, which requires more accurate consideration (see below).

There are more diagrams in the functions 〈ϕ′ϕ′〉 and 〈ϕ′ϕ〉 having the same topology as
diagrams 4 and 5, with another placements of the slashes. They also vanish because of the
two reasons explained above, and we do not show them in the figures.

As a result, in the functions 〈ϕ′ϕ′〉 and 〈ϕ′ϕϕϕ〉 only diagrams 2 and 12 are divergent.
Integration over times (or frequencies) in diagram 9 leads to the expression (up to a

numerical factor and with implied IR cut-offs)

p‖
∫

dk
∫

dq
δ(k‖)q‖

[(p + k)2 + q2 + (q + k)2]q2k
d−1+ξ

⊥
, (B.1)

where one external momentum p‖ has already appeared as an overall factor. Due to the
presence of the δ function in the integrand, one can replace (p + k)2 → p2

‖ + (p⊥ + k⊥)2 in the
denominator. Thus, the expansion of the integral in small momenta begins only with quadratic
terms: p2

⊥ (due to the persisting SO(d − 1) invariance) and p2
‖ . The total expression (B.1)

can only begin with cubic terms and is therefore UV finite, because the possible superficial
divergence of the function 〈ϕϕ′〉 must be quadratic; see section 3. It remains to note that in the
isotropic case the UV finiteness of such a diagram would be guaranteed by the transversality
of the velocity propagator; see the remark in [8].

Thus, we are left with the five UV divergent diagrams 2, 6, 7, 8 and 12.
The analytic expression for diagram 6 has the form

D6(p) = (iσp‖)2
∫

dω

(2π)

∫
dk

(2π)d
Dv(k)

1

−iσω + ε(p − k)
(B.2)
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with Dv from (2.8), the prefactor coming from the vertices and ε(k) = k2
⊥ + uk2

‖ coming from
(2.15); the result is independent of the external frequency. Integration over ω involves the
indeterminacy ∫

dω

(2π)

1

−iσω + ε(p − k)
= σ−1θ(0), (B.3)

where θ(0) is the step function at the origin. This indeterminacy reflects the details of the
velocity statistics lost in the white-noise limit (2.7) and it should be carefully resolved; see e.g.
the discussion in the appendix of [21]. In our case, the function δ(t − t ′) should be understood
as the limit of a narrow function which is necessarily symmetric in t ↔ t ′, because (2.7) is a
pair correlation function. Thus, the quantity in (B.3) must be unambiguously defined by half
the sum of the limits: θ(0) = 1/2. Then after the trivial integration over k‖ and using (3.4)
one obtains

D6(p) = −p2
‖
wuµξ

2

∫
dk⊥

(2π)(d−1)

1

k
(d−1+ξ)

⊥
. (B.4)

Finally, the integration over k⊥ gives

D6(p) = −p 2
‖wu(µ/m)ξ

Sd−1

2(2π)(d−1)

1

ξ
= −p 2

‖
wu

4π2

1

ξ
+ UV finite part, (B.5)

where Sd = 2πd/2/	(d/2) with Euler’s 	 function is the surface area of the unit sphere in
the d-dimensional space.

As already discussed at the end of section 3, in our model there are subtleties in defining
the MS scheme. In our calculations we always assumed that ε ∼ ξ , treated the combinations
like ε/ξ as UV finite and did not include them into the renormalization constants; this is implied
in the last equality in (B.5). However, in the leading-order approximations these subtleties
are not too important. In particular, another (and eventually equivalent) possibility is to
include the factor Sd−1/2(2π)(d−1) (and not only its value at ε = 0) into the definition of the
new coupling constant w̃; see the text below equation (4.9). This will include all powers
of the ratio ε/ξ from (B.5) into the corresponding renormalization constant Z4 without
changing the anomalous dimension γ4.

The remaining diagrams 2, 7, 8 and 12 do not involve the velocity propagator 〈vv〉0 and
can be reduced to the well-known diagrams of the isotropic model A. Consider diagram 8 as
an example. The corresponding analytic expression can be represented in the form

λ2I
(
ω,p2

⊥ + up 2
‖, u

) = λ2u−1I
(
ω,p2

⊥ + up 2
‖, u = 1

)
. (B.6)

Here, ω and p = p⊥ + p‖ are the external frequency and momentum, λ2 comes from the vertex
factors and I (· · ·), after the integrations over the internal times or frequencies, is represented
as a double integral over the two integration momenta, say, k and q. All the momenta enter
the integrand via the functions of the type ε(k) = k2

⊥ + uk2
‖ coming from expressions (2.15),

(2.16) with the replacements u0 → u and τ0 → 0 (see the discussion in the beginning of the
appendix). This explains the fact that I (· · ·) depends on p through the only scalar argument
p2

⊥ + up2
‖ . This also gives the second equality in (B.6) after the rescaling of the integration

momenta uk‖ → k‖, uq‖ → q‖. The factor u−1 arises from the Jacobians and combines
with λ2 to give the prefactor λ2u−1 = g2; see equation (2.17). However, the quantity on the
right-hand side of (B.6) is nothing other than the analytic expression for diagram 8 in the
isotropic (u = 1) model A, while the dependence on u persists in its modified momentum
argument p2 → p2

⊥ + up 2
‖.

The isotropic integral is represented in the form

I (ω, p, u = 1) = {−iσωA + p2B}1

ε
+ UV finite part
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with known (see e.g. [43]) dimensionless coefficients A,B, which for (B.6) gives

λ2I
(
ω,p2

⊥ + up2
‖, u

) = g2
{−iσωA +

(
p2

⊥ + up 2
‖
)
B
}1

ε
+ UV finite part. (B.7)

This expression fully determines contribution of diagram 8 to the renormalization constants
Z2,3,4 in our model (3.3). Similar considerations determine the contributions of diagrams 2, 7
and 12 to the constants Z1,5,6 in terms of the known coefficients for model A. The latter are well
known, but for completeness we will discuss the corresponding calculational techniques which
proved to be useful in the three-loop calculation in model A [43] and might be interesting in
itself.

Two key points are as follows: the convolution of two functions of the form

F(α; a) ≡ (−iωa + k2)−α (B.8)

is a function of the same form,

F(α; a) ∗ F(β; b) = θ(ab)K2(α, β; a, b)F (α + β − d/2 − 1; a + b) (B.9)

with the coefficient

K2(α, β; a, b) = ad/2−αbd/2−β(a + b)α+β−d−1 	(α + β − d/2 − 1)

(4π)d/2	(α)	(β)
,

while the product of two such functions can be represented as a single integral of a function
of the same form with the aid of the generalized Feynman formula:

F(α; a) · F(β; b) = 	(α + β)

	(α)	(β)

∫ 1

0
ds sα−1(1 − s)β−1F(α + β; as + b(1 − s)). (B.10)

Equation (B.9) can be obtained from the fact that in the {t, x} representation function (B.8)
takes on the form

F(α; a) → θ(t sign(a))ad/2−α

(4π)d/2	(α)
tα−d/2−1 exp

{
−ax2

4t

}
, (B.11)

and the product of such functions (which corresponds to the convolution of their Fourier
transforms) is obviously a function of the same form. Note that for ab < 0 the convolution
(B.9) vanishes because it corresponds to the product of a retarded and an advanced function of
the form (B.11). In the same manner, for the convolution of three functions (B.8) one obtains

F(α; a) ∗ F(β; b) ∗ F(γ ; c) = K3(α, β, γ ; a, b, c)F (α + β + γ − d − 2) (B.12)

with the coefficient

K3(α, β, γ ; a, b, c) = θ(ab)θ(bc)
	(α + β + γ − d − 2)

(4π)d/2	(α)	(β)	(γ )

× ad/2−αbd/2−βcd/2−γ (a + b + c)α+β+γ−3d/2−2,

and so on.
In the notation (B.8), the bare propagators of the scalar fields ϕ, ϕ′ can be written as

〈ϕϕ′〉0 = F(1, σ ), 〈ϕ′ϕ〉0 = F(1,−σ), 〈ϕϕ〉0 =
∫ σ

−σ

duF(2; u).

In the last expression, we used equation (B.10) with a = −b = σ, α = β = 1 and introduced
the new integration variable as u = σ(1 − 2s).

Consider again diagram 8 as an example of the calculation of the pole part in ε. It is
convenient to set σ = 1 (the dependence on σ can easily be restored by dimensionality) and
discard the factors like (4π)−d/2 which always combine with g to form the new coupling
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constant g̃; see the text below equation (4.9). Then the analytic expression for diagram 8 reads
(we omit the factor g2)

D8 =
∫ 1

−1
du1

∫ 1

−1
du2 F(2, u1) ∗ F(2, u2) ∗ F(1, 1). (B.13)

Applying the reference formula (B.12) to the integrand of (B.13) gives

D8 = 	(3 − d)

∫ 1

0
du1

∫ 1

0
du2 u

2−d/2
1 u

2−d/2
2 (u1 + u2 + 1)3−3d/2F(3 − d, u1 + u2 + 1).

(B.14)

Note that only positive values of u1,2 survive in (B.14) due to the θ functions in (B.12).
In order to extract the pole part of (B.14), it is sufficient to replace 	(3 − d) =

	(−1 + ε) → −1/ε and to set ε = 0 in the integrand; this gives

D8 = − 1

2ε
[−iωI2 + p2I3] + UV finite part, (B.15)

with the coefficients

In =
∫ 1

0
du1

∫ 1

0
du2

1

(u1 + u2 + 1)n
=

∫ 2

0
dup(u)

1

(1 + u)n
(B.16)

and the weight function

p(u) =
{
u, for u < 1,

2 − u, for u > 1.

The integrals in (B.16) are easily calculated directly, but it is instructive to use the following
trick, which proved extremely useful in the higher order calculations. Let us introduce the
generating function

I (z) =
∫ 2

0
dup(u)

1

z + u
. (B.17)

It is easily seen that the integrals I2 and I3 from (B.16) are the second and third coefficients in
the expansion of the quantity I (1 − δ) in δ. Calculation of the integral (B.17) up to irrelevant
constant terms gives

I (z) � z ln
z(z + 2)

(z + 1)2
+ 2 ln

z + 2

z + 1
,

and the expansion

I (1 − δ) = const + δ ln(4/3) + δ2/6 + O(δ3)

gives the desired coefficients I2,3 in (B.15), which in their turn determine the coefficients A,B
in (B.7).

Once a renormalization constant Zi has been calculated, the corresponding anomalous
dimension is readily found from the relation

γi = (βg∂g + βw∂w) ln Zi = −(εDg + ξDw) ln Zi. (B.18)

In the first equality, we used definition (4.4), expression (4.3) for the operation D̃µ in
renormalized variables and the fact that Z’s depend only on the two completely dimensionless
coupling constants g and w. In the second equality, we retained only the leading-order terms
in the β functions (4.5), which is sufficient for our approximation. The factors ε and ξ in
(B.18) cancel the corresponding poles contained in ln Zi , which leads to the final UV finite
expressions for the anomalous dimensions, given in (4.9) and (4.10).
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